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Kernel Analysis

J. Vernon Odom

The preceding chapter dealt with linear systems
and stated that there is no general method of de-
scribing nonlinearities. Nevertheless, these are so
common and important in the visual system that
methods of description are important and none
more so than kernel analysis. The aims of this chapter
are, first, to give a nonrigorous account of this
method that will enable the clinical electrophysiolo-
gist to use the method and interpret the results and,
second, to briefly indicate the rationale for using
kernel analysis and the choice of strategy to fit par-
ticular situations. Finally, some clinical and experi-
mental results of this method will be given. For a
more mathematically rigorous treatment of many of
these same points the reader is referred to other
sources. 7+ % 12-14, 16, 17. 20, 23, 26, 27

The definitions of a linear system are given in the
previous chapter. It will be recalled that if the re-
sponse to a brief impulse is known, the response of
a linear system to any other stimulus can be pre-
dicted. This is not true of a nonlinear system. Figure
30-1 shows an example. Part A is a diagram of two
stimulus pulses— the stimulus readily obtained from
Grass stroboscopes, for example; part B shows the
response. The early part of the response is shown as
a full line. In the absence of a stimulus, the record
would continue according to the dotted line, but in
the presence of a second flash the record corre-
sponding to the lower full line is obtained. If the re-
sponses to the first and second of the paired flashes
were equal (a linear system), the upper of the two
lines would be followed. Part C shows the difference
between the actual response and the larger response
expected from a linear system. Note that the wave-
form (for ease look at the peak times) of the residual

254

“real” second response and also the waveform of the
deficit bear a complex relationship to the impulse re-
sponse. Many systems that are nearly linear have
thresholds and saturation points, and stimuli of ap-
propriate intensity can evoke nonlinear behavior.
Such nonlinearities can be modeled by electronic
components, e.g., rectifiers, amplifiers, filters. In the
case of Figure 30-1, which behaves in a way very
similar to the electroretinogram (ERG), the nonlin-
earity occurs at various voltage levels and is time de-
pendent.

Several strategies exist to characterize a system so
that its response to an arbitrary stimulus can be pre-
dicted. In the time domain these strategies are based
on computing cross-correlations between the stimu-
lus and the response.” % 1! 13 14 16. 2023, 27 Gimyj
used to determine kernels are presented in Figure
30-2. Typical stimuli are (1) “white” noise or (2) pseu-
dorandom sequences (PRS) such as m-sequences. In
the frequency domain, the system’s responses to a
set of sine waves are described by Fourier analysis,
and the responses of appropriate order (e.g., second
order, etc.) are summed.!!” 12/ 17- 26

When using these input signals, it is possible to
calculate a series of integrals that fully characterize
the system’s response to any arbitrary stimulus. Ker-
nels are the weights of these integrals; as such they
are analogous to the coefficients of a polynomial.
The zero-order kernel represents the bias or mean
response of a system. The first-order kernel, analog-
ous to the polynomial’s first-order coefficient, repre-
sents the best linear approximation (in a least mean
square error sense) of the response elicited by the
stimulus and estimates the impulse response. The
second-order kernel is analogous to the second-
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First- and second-order kernels. The four panels illustrate several of the major points of first- and second-order kernels. Panel
A illustrates two impulses with a fixed separation. Panel B illustrates (1) the response to a single pulse, (2) the linear prediction
of the response to two pulses with the delay illustrated in panel A (the response of two single flashes added together with the
appropriate delay), and (3) the obtained response. Panel C indicates the difference between the predicted response and the
response obtained in panel B. Panel D illustrates one way of presenting the second-order kernel. The second-order kernel has
three dimensions. Time from pulse 1 is on the abscissa, and time from pulse 2 is on the ordinate. The difference between
linear predictions and obtained results (e.g., panel C) would be plotted either on the z-axis (not displayed) or as contour lines
on the xy-coordinates. The main diagonal represents the response when the two pulses were at the same time and reflects
second-order nonlinearities related to amplitude differences in the pulses. One physical system with second-order amplitude-
dependent nonlinearities is a rectifier. Off diagonails represent the differences between predicted and obtained responses for a
specific difference in time between the two pulses. Panel C would represent an off diagonal, with the time between pulses

illustrated in A.

order coefficient in a polynomial equation; it repre-
sents the interactions of two stimulus pulses or vari-
ations in stimulus pulse amplitude on the response.
It is difficult to record enough response samples to
characterize higher-order kernels accurately. Conse-
quently, it is uncommon to calculate kernels beyond
the second order. Figure 30-3 illustrates some of the
difficulties of linear approximations of nonlinear sys-
tems. A linear approximation of a nonlinear system
varies with the range of stimulus conditions over
which the estimate is made.

FIRST-ORDER KERNELS AND SYSTEMS

If a system were linear, the first-order kernel
would completely characterize the system and
would be exactly equivalent to the normalized im-
pulse response. In a nonlinear system, the first-
order kernel represents a linear approximation to the

system’s impulse response. Because higher-order
odd nonlinearities (e.g., third, fifth, etc.) can influ-
ence the estimate of the first-order kernel, it does
not represent or estimate the system’s linear ele-
ments or processes directly. However, given a
model of the visual system, e.g., a sandwich mod-
el, one can evaluate the appropriateness of the
models.7' 14, 16, 17, 26

The visual system is highly nonlinear. The visual
system’s nonlinearity is indicated by-its response to
pattern stimulation, expecially as recorded by visual
evoked potentials (VEPs). Figure 30-4 illustrates
that a linear system’s response to either pattern
appearance or reversal as recorded by scalp elec-
trodes cannot be observed if (1) there is no change in
the mean luminance with pattern appearance or
change and (2) the receptor clements are homoge-
neously spaced and one assumes that the elements
responds symmetrically to light increase and de-
crease.'® *® Despite the visual system’s essential
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Stimuli for Kernel Analysis
+1
Bandlimited
0 “White"
-1 Noise
+1
0 {U”Mmm“mm
-1 Binary
+1
1 Ternary
Sum of
0 Two
Sinusoids

FIG 30-2.

Stimuli for kernel analysis. The values of +1, 0, and —1 rep-
resent arbitrary dimensions. They may be thought of as in-
put voltages, logic levels, or intensity levels. A, an effort to
represent band-limited white noise. It should have a flat fre-
quency spectrum and a gaussian amplitude distribution.
White noise may be approximated by using a sum of sinu-
soids (usually eight or more different frequencies). Binary
pseudorandom sequences (B), ternary sequences (C), and
sums of two sinusoids (D) have useful properties. Determin-
istic signals such as B, C, and D may have greater contrast,
are computationally easier to analyze, and may be aver-
aged.
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nonlinearity it is possible to calculate a first-order
kernel.

SECOND-ORDER KERNELS

In the time domain, the second-order kernel is
a three-dimensional construct that represents the
response as a function of time from a first impulse
and a second impulse. It indicates the nonlinear
effect of the time between two pulses on the re-
sponse.” * '* 27 Usually, the second-order kernel is
plotted as a two-dimensional contour map (see Fig
30-1,D) with the x- and y-axes representing time
from the first and second pulses, respectively. In the
frequency domain, the second-order kernel is the
sum of all of the second-order frequencies present in
the response.!! ' 26

STIMULI

Theoretically, gaussian white noise is the most
appealing stimulus with which to characterize a sys-
tem. It has equal power at all frequencies and a
gaussian amplitude distribution and is equivalent to
all frequencies of sine waves, with their phases ran-
dom with respect to one another. If white noise has
a gaussian amplitude distribution, most of the
changes in stimulus values are small, and if the
stimulus is light, the nonnegative nature of light re-
quires a truncation of range about the mean value.

Response

Stimulus ———

Linear approximations of the response of a nonlinear system. The dotted lines extending to the abscissa indicate the limits of
the stimulus conditions; those extending to the ordinate indicate the limits of the observed responses. The straight lines were
best fit through the indicated regions. Linear estimates of a nonlinear process will be different depending on the input condi-
tions, e.g., mean luminance or contrast, and are highly dependent on the stimulus values used. Consequently, different exper-
iments can yield very different estimates of the first-order kernel. The presence of a strong reliable first-order kernel for a
particular stimulus range does not mean that the system or the response is linear.
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If the visual system were composed of linear elements, the response recorded by ERG and VEP electrodes to pattern reversal
and to pattern appearance would be zero. The top section of the figure represents the stimuli observed at two time periods,
time 1 and time 2. The second row indicates the two sensors that detect the light level in the two regions of the figure. The
third row represents the voltage outputs of the sensors at the two times, low output for dark and higher outputs for light. The
fourth row indicates that any ERG or VEP electrode sums the output of the two sensors. In each case the sums are the same
in time 1 and time 2, and there would be no change in response recorded by the electrode.

Therefore, the signal-to-noise ratio of responses elic-
ited by white noise stimuli is often small and re-
quires longer recording periods to acquire reliable
kernel estimates. The same considerations apply to
sums of sinusoids. The larger the number of fre-
quencies used, the lower the maximum contrast of
individual sine waves because the total contrast of
the sum of sinusoids must be 100% or less. For ex-
ample, if one employed a sum of eight sine waves,
the maximum contrast of any one frequency would
be about 12%.

If a PRS of two or three stimulus levels or a sum
of sinusoids with two or three sine waves is selected
as the stimulus, the system characterization will be
less complete, but there will be an improved re-
sponse signal-to-noise ratio because the stimuli can
be presented at higher contrasts. Therefore, shorter
recording periods may be used to acquire the re-
sponse. Because the stimulus is deterministic, more
efficient analysis procedurcs may be used to calcu-
late the kernels, and the responses may be signal av-
eraged.

When determining kerncels from PRS several con-
straints are important. Firsl, if a binary PRS controls
stimulus polarity, it is impossible to establish the
main diagonal of the second-order kernel (Table
30-1). Second, when using PRS, general principles
of digital sampling must be observed. The accuracy

of the kernels is primarily determined by the total
duration of the cxperiment,™ *” and the highest-or-
der kernel that can be calculated is limited by the re-
cording period.

To avoid what are termed deconvolution errors in
kernel estimation, the stimulation frequency should
be high relative to the high-frequency limit of the vi-
sual system (e.g., the ERG or VEP critical flicker fu-
sion frequency) at the particular mean luminance
and contrast selected. To avoid transduction errors

TABLE 30-1.
Effect of Binary Sequence Control
Popularity Change/Reversal
Sequence
Value Light Pattern Light Pattern
-1 off 1 off 1
+1 on 2 on 2
+1 on 2 off 1
-1 off 1 off 1
+1 on 2 on 2
-1 oft 1 on 2
+1 off 1 off 1
-1 oft 1 off 1
+1 on 2 on 2
-1 on 2 on 2
-1 off 1 on 2
+1 on 2 off 1
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the stimulus must be accurately presented, i.e., the
stimulus-generating interface must be able to follow
a stimulus of at least twice the maximum stimulus
frequency. For example, a video display cannot fol-
low stimuli of greater than 30 Hz in the Americas or
25 Hz or so in Europe and Asia. The luminance of
xenon flash units often varies with the frequency or
interstimulus interval. If a xenon flash is used, it
must be stable in these characteristics. A cathode ray
tube display, a light-emitting diode display, or a
bright light with a shutter or chopper as the stimu-
lus should work well.

To understand the meaning of a kernel, one must
know which stimulus events were controlled by the
PRS (see Table 30-1). If the stimulus is light and a PRS
controls stimulus polarity (light on or light off), the
impulse is a rapid change from the minimum light
level to the maximum light level employed in the PRS
and has a duration of one time period in the PRS. If
the stimulus is pattern, the PRS may control stimulus
polarity (e.g., pattern phase 1 or 2) or the presence or
absence of a reversal. The impulse is a pattern rever-
sal in the second case. In the first case, it is the rapid
change from pattern phase 1 to phase 2 and back to
phase 1. Only a few VEP or ERG experiments have
employed kernel analysis,' = 8 13 15 17-22. 24, 25, 28-30
Determinations of the first- and second-order kernels
permit the detection of different frequency regions
of VEP activity' '* 17 and isolation of the character-
istics of different stages of monocular™ ' ** and bin-
ocular" ' # visual processing and demonstrate the
feasibility of using kernel analysis in clinical situa-
tions.> * 1° The isolation of particular pathways or
stages of visual processing open exciting possibilities
for clarifying the nature of disease processes or de-
tecting and diagnosing different diseases.

VEP* and cone ERG* ' ® first-order kernels elic-
ited by luminance are reported to be acquired more
rapidly and/or to be more reliable than their aver-
aged equivalents. Cone ERG first-order kernels are
abnormal in some amblyopes.® Rod ERG first-order
kernels are considerably smaller than the clinical
dark-adapted flash ERG” because (1) it is difficult to
achieve the same level of dark adaptation in the PRS
conditions as in the clinical situation, (2) the flash in-
tensity is usually lower, and (3) the clinical ERG re-
flects linear and nonlinear processes.

Pattern reversal stimulation has been employed
successfully to determine first-order kernels of
VEPs® '* and ERGs® (see Table 30-1). Patients with
multiple sclerosis generally have altered VEP pattern
reversal kernels,'® and amblyopes have smaller VEP
and pattern ERG responses in the amblyopic eye.®

Recently, arrays of several hundred light sources
have been employed to estimate ERG and VEP first-
and second-order kernels. From these kernels it is
possible to compute ERG* or VEP* visual fields
with finer spatial resolution than automated perime-
try can in a recording session of less than 30 minutes
for both eyes. ERG fields are abnormal in blind spot
syndrome and age-related maculopathy patients.*

The physiological substrate of kernels is not well
understood. For example, the A- and B-waves of the
ERG first-order kernel may have the same retinal or-
igins as the ERG a- and b-waves.” ® The physiologi-
cal origin of the ERG second-order kernel is un-
known but may be largely determined in the inner
retina. As understanding of the origin and meaning
of kernels advances, they will become more widely
used in clinical situations and aid in the more pre-
cise identification of the origins of deficits created by
ophthalmic diseases.
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